Preparation and Crystal Structure of μ-Cyclopentadienyl- μ-bromo-bis-(tri-isopropylphosphinepalladium)

By Arnaud Ducruix, Hugh Felkin, Claudine Pascard,* and G. Kevin Turner*
(Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-sur-Yvette, France)

Summary $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPr}_{3}{ }_{3}\right) \mathrm{PdBr}\right]$ reacts with magnesium in tetrahydrofuran to give the novel dimeric complex $\left[\mu-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)-\mu-\mathrm{BrPd}_{2}\left(\mathrm{PPr}_{3}^{1}\right)_{2}\right]$, the crystal structure of which shows that the two palladium atoms are bridged by the bromine atom and the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring, which has unequal $\mathrm{C}-\mathrm{C}$ bonds.

DURING our investigations into the reaction of magnesium with transition-metal complexes, we have isolated the dimeric palladium complex $\left[\mu-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)-\mu-\mathrm{BrPd}_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$. This is the first example of a compound with a bridging cyclopentadienyl ring for which it has been possible to determine the structure of the bridging group. \dagger

Reaction of $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Pd}\left(\operatorname{PPr}_{3}\right) \mathrm{Br}\right]$ (I) ${ }^{2}$ with excess of magnesium in dry THF under nitrogen at room temperature consumed 0.5 mol of magnesium per mol of palladium complex, and yielded a deep red solution after ca. 1 h . Dark-red, air-stable crystals of the title complex were isolated from this solution, and recrystallisation from toluene-hexane at $-30^{\circ} \mathrm{C}$ gave the pure product, m.p.
$144{ }^{\circ} \mathrm{C}$ (decomp.) in 80% yield. Its ${ }^{1} \mathrm{H}$ n.m.r. spectrum in CDCl_{3} showed a triplet due to the $\mathrm{C}_{5} \mathrm{H}_{5}$ group at $\tau 4.67$, $J(\mathrm{P}-\mathrm{H}) 2.1 \mathrm{~Hz}$. The ${ }^{13} \mathrm{C}$ n.m.r. spectrum in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene showed a singlet for the $\mathrm{C}_{5} \mathrm{H}_{5}$ group at $\delta 88.19$ p.p.m. (relative to $\mathrm{Me}_{4} \mathrm{Si}$), which remained unchanged at $-60^{\circ} \mathrm{C}$.
The compounds $\left[\mu-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)-\mu-\mathrm{XPd}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right] \quad\left(\mathrm{R}=\operatorname{Pr}^{1}\right.$ $\mathrm{X}=\mathrm{Cl}$ or $\mathrm{I} ; \mathrm{R}=\mathrm{Ph}$ or cyclohexyl, $\mathrm{X}=\mathrm{Br}$) have been prepared by the same method from the complexes $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Pd}\left(\mathrm{PR}_{3}\right) \mathrm{X}\right]$, and characterised by n.m.r. spectroscopy and elemental analysis. It is interesting to note that the analogous complexes $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PR}_{3}\right) \mathrm{NiBr}\right]$ and $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ (diphos) FeBr] (diphos $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$) react with magnesium under the same conditions to give inorganoGrignard reagents. ${ }^{3}$
The title complex reacts with TlSPh in benzene to give $\left[\mu-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)-\mu-\mathrm{SPhPd}_{2}\left(\mathrm{PPr}_{3}^{1}\right)_{2}\right]$ in quantitative yield, and with CS_{2} to give (I) and Pd metal.

Crystal data: Crystals of the title complex are monoclinic, space group $P 2_{1}, a=13.002(2), b=15.551(2), c=15.734$ (2) $\AA, \beta=116.7(1)^{\circ}, Z=2.2672$ independent reflections,
\dagger The crystal structure of only one other compound containing a bridging $\mathrm{C}_{5} \mathrm{H}_{5}$ group has been reported, ${ }^{1}$ viz. $\left[\mu-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)-\mu-\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)-\right.$ $\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$], in which the methylallyl and $\mathrm{C}_{5} \mathrm{H}_{5}$ groups were disordered, making it impossible to determine their geometries.
collected with monochromated Mo- K_{α} radiation on a Phillips automatic diffractometer, were used to solve the structure by standard Patterson, Fourier, and least-squares methods. The final R value is $\mathbf{3 . 5} \%$.

Figure. Structure of μ-cyclopentadienyl- μ-bromo-bis(tri-isopropylphosphinepalladium). Bond lengths (\AA): $\mathrm{Pd}(1)-\mathrm{Br}$, $2 \cdot 512(1) ; \operatorname{Pd}(2)-\mathrm{Br}, 2 \cdot 504(1) ; \operatorname{Pd}(1)-\mathrm{C}(1), 2 \cdot 124(11) ; \operatorname{Pd}(2)-\mathrm{C}(3)$ $2.140(11) ; \operatorname{Pd}(1)-\mathrm{C}(2), 2.568(11) ; \operatorname{Pd}(2)-\mathrm{C}(2), 2.615(11) ; \operatorname{Pd}(1)-$ $\mathrm{C}(5), 2.788(11) ; \mathrm{Pd}(2)-\mathrm{C}(4), 2.720(11) ; \mathrm{C}(1)-\mathrm{C}(2), 1.485(17)$; $\mathrm{C}(2)-\mathrm{C}(3), 1 \cdot 522(17) ; \mathrm{C}(3)-\mathrm{C}(4), 1 \cdot 455(18) ; \mathrm{C}(5)-\mathrm{C}(1), 1 \cdot 512(15)$, $\mathrm{C}(4)-\mathrm{C}(5), 1 \cdot 331(18) ; \operatorname{Pd}(1)-\mathrm{Pd}(2), 2 \cdot 609(1)$.
The molecular structure of the complex is shown in the Figure. The $\mathrm{P}(1), \mathrm{P}(2), \mathrm{Pd}(1), \mathrm{Pd}(2), \mathrm{Br}, \mathrm{C}(1)$, and $\mathrm{C}(3)$
atoms are very nearly coplanar, as are the carbon atoms of the cyclopentadienyl ring, which is inclined at an angle of 82° to the plane containing the Br and Pd atoms. The distance between the two palladium atoms is short ($2 \cdot 609 \AA$), showing that a Pd-Pd bond exists. The co-ordination of the palladium atoms is distorted square-planar and resembles that in $\left[\mu-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)-\mu-\mathrm{IPd}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] . \mathrm{C}_{6} \mathrm{H}_{6}{ }^{4}$ and $\left[\mu-\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)-\mu-\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{7}\right) \mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{\cdot 1}$

Within the cyclopentadienyl ring four $\mathrm{C}-\mathrm{C}$ bond distances are approximately equal ($1 \cdot 46-1.52 \AA, \sigma 0.018$), but the $\mathrm{C}(4)-\mathrm{C}(5)$ bond is much shorter ($1.33 \AA$), showing that the π-electron density is only partially delocalised in the ring. The $\mathrm{C}_{5} \mathrm{H}_{5}$ bridge can therefore be regarded as an allyl plus alkene group, as suggested for some non-bridging systems. ${ }^{5}$

The $\mathrm{C}(1)-\mathrm{Pd}(1)$ and $\mathrm{C}(3)-\mathrm{Pd}(2)$ distances are $2 \cdot 12$ and $2 \cdot 14 \AA$ respectively, and the inclination of the cyclopentadienyl ring puts the $\mathrm{C}(2)$ atom at about the same distance $(2 \cdot 23 \AA)$ from the middle of the $\mathrm{Pd}-\mathrm{Pd}$ bond. These distances fall within the range $(2 \cdot 02-2 \cdot 22 \AA)^{6}$ found for the $\mathrm{C}-\mathrm{Pd}$ distances in simple η-allyl-Pd complexes.

We thank the Compagnie des Métaux Précieux for a generous loan of palladium.
(Received, 20th May 1975; Com. 572.)
${ }^{1}$ H. Werner, D. Tune, G. Parker, C. Krüger, and D. J. Brauer, Angew. Chem. Internat. Edn., 1975, 14, 185.
${ }^{2}$ R. J. Cross and R. Wardle, J. Chem. Soc. (A), $1971,2000$.
${ }^{3}$ H. Felkin and P. J. Knowles, J. Organometallic Chem., 1972, 37, C14; H. Felkin, P. J. Knowles, B. Meunier, A. Mitschler, L. Ricard, and R. Weiss, J.C.S. Chem. Comm., 1974, 44.
${ }^{4}$ Y. Kobayashi, Y. Iitaka, and H. Yamazaki, Acta Cryst., 1972, B28, 899.
${ }^{5}$ M. J. Bennett, M. R. Churchill, M. Gerloch, and R. Mason, Nature, 1964, 201, 1318.
${ }^{6}$ P. M. Maitlis, 'The Organic Chemistry of Palladium', Academic Press, New York, 1971, Vol. I, p. 38.

